Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing

نویسنده

  • Qingtang Jiang
چکیده

Surface multiresolution processing is an important subject in CAGD. It also poses many challenging problems including the design of multiresolution algorithms. Unlike images which are in general sampled on a regular square or hexagonal lattice, the meshes in surfaces processing could have an arbitrary topology, namely, they consist of not only regular vertices but also extraordinary vertices, which requires the multiresolution algorithms have high symmetry. With the idea of lifting scheme, [1] introduces a novel triangle surface multiresolution algorithm which works for both regular and extraordinary vertices. This method is also successfully used to develop multiresolution algorithms for quad surface and √ 3 triangle surface processing in [35] and [36] respectively. When considering the biorthogonality, these papers do not use the conventional L2(IR) inner product, and they do not consider the corresponding lowpass filter, highpass filters, scaling function and wavelets. Hence, some basic properties such as smoothness and approximation power of the scaling functions and wavelets for regular vertices are unclear. On the other hand, the symmetry of subdivision masks (namely, the lowpass filters of filter banks) for surface subdivision is well studied, while the symmetry of the highpass filters for surface processing is rarely considered in the literature. In this paper we introduce the notion of 4-fold symmetry for biorthogonal filter banks. We demonstrate that 4-fold symmetric filter banks result in multiresolution algorithms with the required symmetry for quad surface processing. In addition, we provide 4-fold symmetric biorthogonal FIR filter banks and construct the associated wavelets, with both the dyadic and √ 2 refinements. Furthermore, we show that some filter banks constructed in this paper result in very simple multiresolution decomposition and reconstruction algorithms as those in [1, 35, 36]. Our method can provide the filter banks corresponding to the multiresolution algorithms in [35] for dyadic multiresolution quad surface processing. Therefore, the properties of the scaling functions and wavelets corresponding to those algorithms can be obtained by analyzing the corresponding filter banks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing

When bivariate filter banks and wavelets are used for surface multiresolution processing, it is required that the decomposition and reconstruction algorithms for regular vertices derived from them have high symmetry. This symmetry requirement makes it possible to design the corresponding multiresolution algorithms for extraordinary vertices. Recently lifting-scheme based biorthogonal bivariate ...

متن کامل

Biorthogonal Wavelets with Six-fold axial Symmetry for Hexagonal Data and Triangle Surface Multiresolution Processing

This paper concerns the construction of highly symmetric compactly supported wavelets for hexagonal data/image and triangle surface multiresolution processing. Recently hexagonal image processing has attracted attention. Compared with the conventional square lattice, the hexagonal lattice has several advantages, including that it has higher symmetry. It is desirable that the filter banks for he...

متن کامل

Wavelets for Hexagonal Data Processing

The hexagonal lattice was proposed as an alternative method for image sampling. The hexagonal sampling has certain advantages over the conventionally used square sampling. Hence, the hexagonal lattice has been used in many areas. A hexagonal lattice allows √ 3, dyadic and √ 7 refinements, which makes it possible to use the multiresolution (multiscale) analysis method to process hexagonally samp...

متن کامل

Biorthogonal Wavelets with 6-fold Axial Symmetry for Hexagonal Data and Triangle Surface Multiresolution Processing

This paper studies the construction of highly symmetric compactly supported wavelets for hexagonal data/image and triangle surface multiresolution processing. Recently hexagonal image processing has attracted attention. Compared with the conventional square lattice, the hexagonal lattice has several advantages, including that it has higher symmetry. It is desirable that the filter banks for hex...

متن کامل

5-refinement Wavelets with 4-fold Symmetry

Recently √ 5-refinement hierarchical sampling has been studied and √ 5-refinement has been used for surface subdivision. Compared with other refinements such as the dyadic or quincunx refinement, √ 5-refinement has a special property that the nodes in a refined lattice form groups of five nodes with these five nodes having different x and y coordinates. This special property has been shown to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2011